Abstract
The present study explored the efficacy of pile shaft surface treatment on the improvement of soil-pile frictional resistance for floating or friction piles. 4 surface conditions of model piles measuring 200 mm long and 20 mm in diameter were examined, namely smooth (control), roughened, fishbone and checked shafts. A pile cap made of plywood was fixed to the top of the pile with 10 mm embedment depth, leaving 190 mm clearance for installation in the sand bed. The test chamber was a see-through glass tank with a footprint of 100 mm x 200 mm and 300 mm height. Coarse sand of D50 = 1.5 mm were loosely placed in the chamber by layers up to 200 mm height before the piles were installed either in single or triple group formations. The incremental load test of conducted via application of dead load ranging between 0.01-0.08 kPa on the pile cap, and the corresponding settlement was recorded. The test results revealed settlement to be reduced by the piles in the order of roughened > fishbone > checked > smooth for the single pile configuration, with maximum reduction of 40 % recorded by the roughened pile. As for the pile group, settlement reduction of the piles with surface treatment clearly outperformed the control pile by almost 50 %, though differences between the former were marginal with seemingly overlapping stress-strain plots. All in all the surface treatment of pile shaft enhanced the shaft friction for the piles installed in sand, but field implementation would require further examination of the pile-driving efficiency as the improved piles could cause additional resistance during installation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.