Abstract
In this paper, we present computationally efficient iterative channel estimation algorithms for Turbo equalizer-based communication receiver. Least Mean Square (LMS) and Recursive least Square (RLS) algorithms have been widely used for updating of various filters used in communication systems. However, LMS algorithm, though very simple, suffers from a relatively slow and data dependent convergence behaviour; while RLS algorithm, with its fast convergence rate, finds little application in practical systems due to its computational complexity. Variants of LMS algorithm, Variable Step Size Normalized LMS (VSSNLMS) and Multiple Variable Step Size Normalized LMS algorithms, are employed through simulation for updating of channel estimates for turbo equalization in this paper. Results based on the combination of turbo equalizer with convolutional code as well as with turbo codes alongside with iterative channel estimation algorithms are presented. The simulation results for different normalized fade rates show how the proposed channel estimation based-algorithms outperformed the LMS algorithm and performed closely to the well known Recursive least square (RLS)-based channel estimation algorithm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.