Abstract

In soft-decision fusion- (SDF-) based cooperative spectrum sensing, weighting the coefficients vector is the main factor affecting the detection performance of cognitive radio networks. In this paper, the use of particle swarm optimization (PSO) algorithm as a prominent technique is proposed to optimize the weighting coefficients vector. The proposed PSO-based scheme opts for the best weighting coefficients vector, leading to improved detection performance of the system. The performance of the proposed method is analyzed and compared with genetic algorithm- (GA-) based technique as well as other conventional SDF schemes through computer simulations. Simulation results validate the robustness of the proposed method over all other SDF techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.