Abstract
This article presents a variable flip-angle approach for balanced steady-state free precession (bSSFP) imaging, which allows increases in signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) while keeping specific absorption rate (SAR) constant or reduces SAR for given CNR and SNR. The gain in SNR is achieved by utilizing the higher signal in the transient phase. Flip-angle variation during the echo train is realized using a trigonometric function with M steps (ramp length). Variation is combined with a linear k-space reordering such that outer parts of k-space are sampled using a lower flip angle alpha(min), while the central part of k-space is acquired with a higher flip angle alpha(max). No additional preparation or dummy cycles are applied prior to data acquisition. Several variation schemes with different starting flip angles alpha(min) and ramp length M are considered. For example, using alpha(min)=1 degrees and M=96, alpha(max) can be set to 47 degrees without exceeding SAR limits at 3 T and gaining up to 50% in SNR, while, conventionally, alpha=34 degrees is the maximal possible flip angle. Resolution seems unaffected in volunteer imaging. In all cases, no transient artifacts due to flip-angle variation were observed. This article demonstrates the use of flip-angle variations in bSSFP to increase SNR and CNR while keeping SAR constant, which is especially important at higher field strengths. Flip-angle variation can also be combined with other methods such as parallel imaging techniques for further SAR reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.