Abstract

To describe a real-time MR imaging platform for synchronous, multi-planar visualization of upper airway collapse in obstructive sleep apnea at 3 Tesla (T) to promote natural sleep with an emphasis on lateral wall visualization. A real-time imaging platform was configured for sleep MR imaging which used a cartesian, partial k-space gradient-echo sequence with an inherent temporal resolution of 3 independent slices every 2 s. Combinations of axial, mid-sagittal, and coronal scan planes were acquired. The system was tested in five subjects with polysomnography-proven obstructive sleep apnea during sleep, with synchronous acquisition of respiratory effort and combined oral-nasal airflow data. Sleep was initiated and maintained to allow demonstration of sleep-induced, upper airway collapse as illustrated in two subjects when using a real-time, sleep MR imaging platform at 3T. Lateral wall collapse could not be visualized on mid-sagittal imaging alone and was best characterized on multiplanar coronal and axial imaging planes. Our dedicated sleep MR imaging platform permitted an acoustic environment of constant "white noise" which was conducive to sleep onset and sleep maintenance in obstructive sleep apnea patients at 3T. Apneic episodes, specifically the lateral walls, were more accurately characterized with synchronous, multiplanar acquisitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.