Abstract

Effects of a sintering agent for La-doped ceria (LDC) as a buffer layer to prevent a chemical reaction between Ni in anode and Sr- and Mg-doped lanthanum gallate (LSGM) electrolyte during sintering were studied for improving sintering and electrical properties. Electrochemical performance of anode-supported solid oxide fuel cells (SOFCs) using LDC and LSGM films prepared by screen printing and co-sintering (1,350 °C) was also investigated. The prepared cell with dense LDC (ca. 17 μm) and LSGM electrolyte (ca. 60 μm) films showed an open circuit voltage close to the theoretical value of 1.10 V and a high maximum power density (0.831 W cm–2) at 700 °C. The addition of 1 wt.% LSGM to porous LDC buffer layer was effective for improving the sintering density and electrical conductivity, resulting in the high power density due to the decreased internal resistance loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call