Abstract

AbstractWe assess the simulation of Australian mean climate and rainfall variability in a new version of the CSIRO coupled ocean–atmosphere global climate model (GCM). The new version, called Mark 3.6 (Mk3.6), differs from its recent predecessors (Mk3.0 and Mk3.5) by inclusion of an interactive aerosol scheme, which treats sulfate, dust, sea salt and carbonaceous aerosol. Other changes include an updated radiation scheme and a modified boundary‐layer treatment. Comparison of the mean summer and winter climate simulations in Mk3.6 with those in Mk3.0 and Mk3.5 shows several improvements in the new version, especially regarding winter rainfall and sea‐level pressure. The improved simulation of Australian mean seasonal climate is confirmed by calculation of a non‐dimensional skill score (the ‘M‐statistic’), using data from all four seasons. However, the most dramatic improvement occurs in the model's simulation of the leading modes of annual rainfall variability, which we assess using empirical orthogonal teleconnections (EOTs). Compared to its predecessors and several international GCMs, Mk3.6 is best able to capture the spatial pattern of the leading rainfall mode, which represents variability due to the El Niño Southern Oscillation (ENSO). Mk3.6 is also best able to capture the spatial pattern of the second rainfall mode, which corresponds to increased rainfall in the northwest, and decreased rainfall over eastern Australia. We propose a possible mechanism for the improved simulation of rainfall variability in terms of the role of interactive dust in Mk3.6. By further suppressing convection over eastern Australia during El Niño events, dust feedbacks may enhance rainfall variability there, in tune with the model's ENSO cycle. This suggests that an interactive aerosol treatment may be important in a GCM used for the study of Australian climate change and variability. Mechanistic sensitivity studies are needed to further evaluate this hypothesis. Copyright © 2009 Royal Meteorological Society

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.