Abstract

Electronic waste recycle (e-recycling) is gaining increasing importance due to greater environmental concerns, legislation, and corporate social responsibility. A novel approach is explored for designing the e-recycling reverse logistics network (RLN) under uncertainty. The goal is to obtain a solution, i.e., increasing the storage capacity of the logistics node, to achieve optimal or near-optimal profit under the collection requirement set by the government and the investment from the enterprise. The approach comprises two parts: a matrix-based simulation model of RLN formed for the uncertainty of demand and reverse logistics collection which calculates the profit under a given candidate solution and simulated annealing (SA) algorithm that is tailored to generating solution using the output of RLN model. To increase the efficiency of the SA algorithm, network static analysis is proposed for getting the quantitative importance of each node in RLN, including the static network generation process and index design. Accordingly, the quantitative importance is applied to increase the likelihood of generating a better candidate solution in the neighborhood search of SA. Numerical experimentation is conducted to validate the RLN model as well as the efficiency of the improved SA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.