Abstract

Prompt and reliable communication between vehicular nodes are essential as its limited coverage and dynamic mobility rate introduces frequent change of network topology. The key feature of vehicular communication that establishes direct connectivity or Road Side Unit-based data transfer among vehicular nodes is responsible for sharing emergency information during critical situations. Multicast routing data dissemination among vehicular nodes is considered to be the potential method of parallel data transfer as they facilitate the option of determining an optimal multicast tree from feasible number of multicast trees established between the source and destinations. This estimation of optimal multicast tree using meta-heuristic techniques is confirmed to improve the throughput and reliability of the network when QoS-based constraints are imposed during multicast routing. An Improved Shuffled Frog-Leaping Algorithm-Based QoS Constrained Multicast Routing (ISFLABMR) is proposed for estimating an optimal multicast tree that confirms effective multi-constrained applied multicast routing between vehicular nodes. ISFLABMR minimizes the cost of transmission to 22% by reducing the number of multicast clusters formed during multicasting through the utilization of local and global-based optimizations. The simulation results of ISFLABMR proveits predominant reduction rate of 24% and 21% in average packet latency and energy consumptions incurred under multicast routing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.