Abstract

Here, for the first time, a method is presented to use electrostatic coupling from a metal of appropriate workfunction, separated from the extension region by a thin insulator, to create an electrostatically-induced charge layer in doped source/drain CMOS. This "virtual extension" allows for lower extension doping and increased underlap between the doped extension and the gate, "sharpening" the carrier profile and improving short-channel device performance. In one example, clock-limiting n-FET switching currents are improved 25% using this approach. However, the improvement in switching speed due to this higher current is partially offset by capacitance between the metal overlap and the extension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call