Abstract
Two new sequential search algorithms for feature selection in hyperspectral remote sensing images are proposed. Since many wavebands in hyperspectral images are redundant and irrelevant, the use of feature selection to improve classification results is highly needed. First, we present a new generalized steepest ascent (GSA) feature selection technique that improves upon the prior steepest ascent algorithm by selecting a better starting search point and performing a more thorough search. It is guaranteed to provide solutions that equal or exceed those of the classical sequential forward floating selection algorithm. However, when the number of available wavebands is large, the computational load required for the GSA algorithm becomes excessive. We thus propose a modification of the improved floating forward selection algorithm which is more computationally efficient. Experimental results for two hyperspectral data sets show that our proposed algorithms yield better classification results than other suboptimal search algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.