Abstract

Sequential convex programming (SCP) is widely used to solve entry trajectory optimization problems. However, challenges persist in scenarios with strict constraints, such as unsolvable convex subproblems, iterative solution oscillations, and slow convergence rates. This study introduces an enhanced SCP algorithm designed to address these limitations. First, hp Radau pseudospectral discretization is used instead of trapezoidal discretization to improve the efficiency in solving subproblems while maintaining discretization accuracy. Second, the trust region is adaptively updated on the basis of trajectory information during iterations. Additionally, constraint relaxation and virtual control are introduced to facilitate smooth iteration at the initial stage. The regularization technique is also utilized to improve the convergence rates. Finally, the proposed algorithm is validated through two examples: maximum-terminal-velocity entry and maximum-terminal-longitude entry. The results show that these two problems cannot be effectively solved using the basic SCP algorithm. However, the proposed algorithm, along with the trust-region SCP algorithm and GPOPS, can solve them efficiently. With comparable accuracy in the obtained solutions, the algorithm proposed in this paper requires only half the CPU time of the trust-region SCP algorithm and just 5 % of the computing time of the general-purpose open-source solver GPOPS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.