Abstract
The sequence tag-based peptide identification methods are a promising alternative to the traditional database search approach. However, a more comprehensive analysis, optimization, and comparison with established methods are necessary before these methods can gain widespread use in the proteomics community. Using the InsPecT open source code base ( Tanner et al., Anal. Chem. 2005, 77, 4626- 39 ), we present an improved sequence tag generation method that directly incorporates multicharged fragment ion peaks present in many tandem mass spectra of higher charge states. We also investigate the performance of sequence tagging under different settings using control data sets generated on five different types of mass spectrometers, as well as using a complex phosphopeptide-enriched sample. We also demonstrate that additional modeling of InsPecT search scores using a semiparametric approach incorporating the accuracy of the precursor ion mass measurement provides additional improvement in the ability to discriminate between correct and incorrect peptide identifications. The overall superior performance of the sequence tag-based peptide identification method is demonstrated by comparison with a commonly used SEQUEST/PeptideProphet approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.