Abstract

AbstractStatistically downscaled forecasts of October–December (OND) rainfall are evaluated over East Africa from two general circulation model (GCM) seasonal prediction systems. The method uses canonical correlation analysis to relate variability in predicted large-scale rainfall (characterizing, e.g., predicted ENSO and Indian Ocean dipole variability) to observed local variability over Kenya and Tanzania. Evaluation is performed for the period 1982–2011 and for the real-time forecast for OND 2015, a season when a strong El Niño was active. The seasonal forecast systems used are the National Centers for Environmental Prediction Climate Forecast System, version 2 (CFSv2), and the Geophysical Fluid Dynamics Laboratory Forecast-Oriented Low Ocean Resolution (GFDL-FLOR) version of CM2.5. The Climate Hazards Group Infrared Precipitation with Station Data (CHIRPS) rainfall dataset—a blend of in situ station observations and satellite estimates—was used at 5 km × 5 km resolution over Kenya and Tanzania as benchmark data for the downscaling. Results for the case-study forecast for OND 2015 show that downscaled output from both models adds realistic spatial detail relative to the coarser raw model output—albeit with some overestimation of rainfall that may have been derived from the downscaling procedure introducing a wet response to El Niño more typical of historical cases. Assessment of the downscaled forecasts over the 1982–2011 period shows positive long-term skill better than that documented in previous studies of unprocessed GCM forecasts for the region. Climate forecast downscaling is thus a key undertaking worldwide in the generation of more reliable products for sector specific application including agricultural planning and decision-making.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.