Abstract

To address the defects of the salp swarm algorithm (SSA) such as the slow convergence speed and ease of falling into a local minimum, a new salp swarm algorithm combining chaotic mapping and decay factor is proposed and combined with back propagation (BP) neural network to achieve an effective prediction of tool wear. Firstly, the chaotic mapping is used to enhance the formation of the population, which facilitates the iterative search and reduces the trapping in the local optimum; secondly, the decay factor is introduced to improve the update of the followers so that the followers can be updated adaptively with the iterations, and the theoretical analysis and validation of the improved SSA are carried out using benchmark test functions. Finally, the improved SSA with a strong optimization capability to solve BP neural networks for the optimal values of hyperparameters is used. The validity of this is verified by using the actual tool wear data set. The test results of the benchmark test function show that the algorithm presented has a better convergence speed and solution accuracy. Meanwhile, compared with the original algorithm, the R2 value of the part life prediction model proposed is improved from 0.962 to 0.989, the MSE value is reduced from the original 34.4 to 9.36, which is a 72% improvement compared with the original algorithm, and a better prediction capability is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.