Abstract

To alleviate the lower performance of Transmission Control Protocol (TCP) congestion control over complex network, especially the high latency and packet loss scenario, Google proposed the Bottleneck Bandwidth and Round-trip propagation time (BBR) congestion control algorithm. In contrast with other TCP congestion control algorithms, BBR adjusted transfer data by maximizing delivery rate and minimizing delay. However, some evaluation experiments have shown that the persistent queues formation and retransmissions in the bottleneck can lead to serious fairness issues between BBR flows with different round-trip times (RTTs). They pointed out that small RTT differences cause unfairness in the throughput of BBR flows and flows with longer RTT can obtain higher bandwidth when competing with the shorter RTT flows. In order to solve this fairness problem, an adaptive congestion window of BBR is proposed, which adjusts the congestion window gain of each BBR flow in network load. The proposed algorithms alleviate the RTT fairness issue by controlling the upper limit of congestion window according to the delivery rate and queue status. In the Network Simulator 3 (NS3) simulation experiment, it shows that the adaptive congestion window of BBR (BBR-ACW) congestion control algorithm improves the fairness by more than 50% and reduces the queuing delay by 54%, compared with that of the original BBR in different buffer sizes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.