Abstract

In the process of biomaterials mediated bone regeneration, rhBMP-2 delivery at efficient dose in sustained kinetics is crucial for promoting cell osteogenic differentiation. Meanwhile, surface morphology of the biomaterials could regulate cellular responses as well as strengthen the rhBMP-2 interaction with cells for better bone induction. Herein, TiO2 nanorod films with varied mesoporous bioactive glass (MBG) incorporation amount were designed to strengthen the efficacy of rhBMP-2, basing on optimized loading/release behaviors and surface nanostructure cooperatively. The MBG incorporation improved rhBMP-2 loading amount and regulated its release behavior. Consequently, the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) on the incorporated films was extremely enhanced, and the incorporated nanorod film with 200nm MBG thickness exhibited the best osteoinduction effect. However, MBG film and the incorporated nanorod film had the same loading amount of rhBMP-2, the latter showed a much higher expression of 7-day osteogenic differentiation index than the former, which could be attributed to the synergistic effect of optimized rhBMP-2 release behavior and surface morphology. The MBG incorporated TiO2 nanorod films here presents a promising strategy for enhancing osteoinduction through optimized rhBMP-2 release behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call