Abstract
In this article, we report on the high dc and RF performance of AlGaN/GaN high electron mobility transistors that employ Ti/Au/Al/Ni/Au metallization stack with shallow trench etching ohmic contact (STEOC). An excellent ohmic contact performance including low contact resistance ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${R}_{C}$ </tex-math></inline-formula> ) of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$0.28~\Omega \cdot $ </tex-math></inline-formula> mm and smooth surface morphology have been achieved simultaneously. Atomic force microscope (AFM) reveals a highly smooth surface morphology with a root mean square (rms) roughness of 6.3 nm even after 810 °C high-temperature annealing (HTA), achieving an improvement of 79% as compared to the conventional Ti/Al/Ni/Au ohmic contact (COC). A high-resolution transmission electron microscope (HRTEM) showed a glossy morphology with a continuous and uniform TiN layer formed in the interface for the STEOC sample, while a bumpy morphology caused from the Ni-Al complexes balling up and TiN island penetrating into the AlGaN/GaN heterostructure were observed for the conventional sample. Consequently, the fabricated transistors with the STEOC process show a high output current of 1.52 A/mm and low ON-resistance ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${R}_{ \mathrm{ ON}}$ </tex-math></inline-formula> ) of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$2.09~\Omega $ </tex-math></inline-formula> mm. In addition, a high current cutoff frequency ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${f}_{T}$ </tex-math></inline-formula> ) of 60 GHz and maximum oscillation frequency ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${f}_{\text {max}}$ </tex-math></inline-formula> ) of 150 GHz were obtained for the STEOC HEMT with a gate length ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${L}_{\text {g}}$ </tex-math></inline-formula> ) of 150 nm. Sub-6 GHz continuous-wave mode power sweep measurements deliver a high power-added-efficiency (PAE) of 67%. These results show the significant potential of the STEOC process to facilitate the development of GaN-based power amplifier (PA) applied for 5G.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.