Abstract

This paper reviews special RF/microwave silicon device implementations in a process that allows two-sided contacting of the devices: the back-wafer contacted silicon-on-glass (SOG) substrate-transfer technology (STT) developed at DIMES. In this technology, metal transmission lines can be placed on the low-loss glass substrate, while the resistive/capacitive parasitics of the silicon devices can be minimized by a direct two-sided contacting. Focus is placed here on the improved device performance that can be achieved. In particular, high-quality SOG varactors have been developed and an overview is given of a number of innovative highly-linear circuit configurations that have successfully made use of the special device properties. A high flexibility in device design is achieved by two-sided contacting because it eliminates the need for buried layers. This aspect has enabled the implementation of varactors with special Ndx -2 doping profiles and a straightforward integration of complementary bipolar devices. For the latter, the integration of AlN heatspreaders has been essential for achieving effective circuit cooling. Moreover, the use of Schottky collector contacts is highlighted also with respect to the potential benefits for the speed of SiGe heterojunction bipolar transistors (HBTs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.