Abstract
Voltage reversal is a severe issue in proton exchange membrane fuel cells (PEMFCs), which can be overcome by adding oxygen evolution electrocatalysts (OER) based on iridium oxide (IrOX) to the anode catalyst layer. However, the crystal structure and antireversal properties of such anode materials have been rarely investigated. Herein, we report amorphous IrOX and explore the transformation of crystal structure under heat treatment to examine their antireversal performance in PEMFCs. It is found that heat treatment results in larger catalyst particles which consequences lower OER activity; however, it shows better voltage reverse tolerance (132.2 min). These investigations demonstrate that a balance is crucial between activity and durability in antireversal properties for PEMFCs. Physical characterizations reveal that improved stability and reversal tolerance is attributed to crystallinity and preferred orientation of IrOX crystals as well as existence of amorphous and crystalline IrOX. This work proposes a attempt to use the mixed phase IrOX in the antireversal anode catalyst and highlights the role of corresponding particle size and durability characteristics for the long-term durability of PEMFCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.