Abstract

Researchers working on image processing have had a hard time handling low-light images due to their low contrast, noise, and brightness. This paper presents an improved method that uses the Retinex theory to enhance low-light images, with a network model mainly composed of a Decom-Net and an Enhance-Net. Residual connectivity is fully utilized in both the Decom-Net and Enhance-Net to reduce the possible loss of image details. Additionally, Enhance-Net introduces a positional pixel attention mechanism that directly incorporates the global information of the image. Specifically, Decom-Net serves to decompose the low-light image into illumination and reflection maps, and Enhance-Net serves to increase the brightness of the illumination map. Finally, via adaptive image fusion, the reflectance map and the enhanced illuminance map are fused to obtain the final enhanced image. Experiments show better results in terms of both subjective visual aspects and objective evaluation indicators. Compared to RetinexNet, the proposed method shows improvements in the full-reference evaluation metrics, including a 4.6% improvement in PSNR, a 1.8% improvement in SSIM, and a 10.8% improvement in LPIPS. Additionally, it achieved an average improvement of 17.3% in the no-reference evaluation metric NIQE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call