Abstract

Sponge-type small-diameter vascular grafts were fabricated from a medical-grade polyurethane, Pellethane 2363-80A, by utilization of a salt casting technique. The grafts were compliance matched with a storage modulus of 0.53 +/- 0.08 MPa. The luminal surface of grafts was modified with a thin layer ( approximately 40 micro m) of gelatin crosslinked by epoxide. Then a special Arg-Gly-Asp (RGD)-containing recombinant protein, named CBD-RGD (cellulose binding domain RGD-containing protein), was coated onto the gelatin layer. The platelet adhesion and activation on such a gelatin/CBD-RGD modified surface was significantly reduced. Human umbilical vein endothelial cells were seeded more efficiently onto the modified grafts. There was also a substantial reduction in the subsequent loss of cells from the graft surface following perfusion in vitro. The cell number retained on the modified graft was enhanced by three times after 1 h of perfusion, and by eight times after 3 h of perfusion (retention rate approximately 63%). The retention after 3 h of perfusion could be further increased to nearly 100% if the lined endothelium on gelatin/CBD-RGD modified graft was cultured for another week before perfusion. The modified surface was also shown to help canine external jugular vein endothelial cells to maintain the round cell morphology in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.