Abstract

This paper addresses the synchronization of stochastic complex networks with time-varying delay via aperiodically intermittent control (AIC). By proposing the concepts of average control ratio and average control frequency for AIC, some new synchronization conditions are obtained, which relax the constraints of the lower bound of control widths and the upper bound of control periods. And the proportion of rest widths can be any value in (0,1). So the constraints on AIC are loosened and thus the conservativeness is reduced compared with the existing related results. Two types of time delay are investigated: (i) the upper bound of time-varying delay should be smaller than the average control width but can be larger than the lower bound of control widths; (ii) the upper bound of time-varying delay has no relationship with control and rest widths. An example of coupled stochastic oscillators systems is presented to show the effectiveness and superiority of our results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call