Abstract

In respiratory self-navigation (SN), signal from static structures, such as the chest wall, may complicate motion detection or introduce post-correction artefacts. Suppressing signal from superfluous tissues may therefore improve image quality. We thus test the hypothesis that SN whole-heart coronary magnetic resonance angiography (MRA) will benefit from an outer-volume suppressing 2D-T2 -Prep and present both phantom and in vivo results. A 2D-T2 -Prep and a conventional T2 -Prep were used prior to a free-breathing 3D-radial SN sequence. Both techniques were compared by imaging a home-built moving cardiac phantom and by performing coronary MRA in nine healthy volunteers. Reconstructions were performed using both a reference-based and a reference-independent approach to motion tracking, along with several coil combinations. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared, along with vessel sharpness (VS). In phantoms, using the 2D-T2 -Prep increased SNR by 16% to 53% and mean VS by 8%; improved motion tracking precision was also achieved. In volunteers, SNR increased by an average of 29% to 33% in the blood pool and by 15% to 25% in the myocardium, depending on the choice of reconstruction coils and algorithm, and VS increased by 34%. A 2D-T2 -Prep significantly improves image quality in both phantoms and volunteers when performing SN coronary MRA. Magn Reson Med 79:1293-1303, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.