Abstract

Mechanical ventilation (MV) therapy partially or fully replaces the work of breathing in patients with respiratory failure. Respiratory mechanics during pressure controlled (PC) or pressure support (PS) are often not estimated due to variability induced by patient’s spontaneous breathing effort (SB) or asynchronous events (AEs). Proposed is an algorithm which allows for the improvement of respiratory system mechanics estimation during pressure controlled ventilation. For testing, 10 retrospective airway pressure and flow data samples were obtained from 6 MV patients, with each data sample containing 450-500 breaths. All data samples with AE present experienced a decrease in 5th to 95th range (Range90) and mean absolute deviation (MAD) for the estimated respiratory system elastance after reconstruction. These results suggested improved in respiratory mechanics estimation during pressure controlled ventilation. The median [maximum (max), minimum (min)] decrease in MAD was 29.4% (51%, 18.6%), and the median (max, min) decrease in Range90 divided by median respiratory system elastance was 30.7% (48.8%, 6.4%). The algorithm is robust to many different spontaneous breathing efforts, asynchrony shapes and types. The proposed algorithm demonstrates the potential to effectively improve respiratory mechanics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call