Abstract

In this paper, super-resolution imaging is described and evaluated for x-ray tomography and is compared with standard tomography and upscaling during reconstruction. Blurring is minimized due to the negligible point spread of photon counting detectors and an electromagnetically movable micro-focus x-ray spot. Scans are acquired in high and low magnification geometry, where the latter is used to minimize penumbral blurring from the x-ray source. Sharpness and level of detail can be significantly increased in reconstructed slices to the point where the source size becomes the limiting factor. The achieved resolution of the different methods is quantified and compared using biological samples via the edge spread function, modulation transfer function, and Fourier ring correlation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.