Abstract

Person re-identification has become a very popular research topic in the computer vision community owing to its numerous applications and growing importance in visual surveillance. Person re-identification remains challenging due to occlusion, illumination and significant intra-class variations across different cameras. In this paper, we propose a multi-task network base on an improved Res2Net model that simultaneously computes the identification loss and verification loss of two pedestrian images. Given a pair of pedestrian images, the system predicts the identities of the two input images and whether they belong to the same identity. In order to obtain deeper feature information of pedestrians, we propose to use the latest Res2Net model for feature extraction of each input image. Experiments on several large-scale person re-identification benchmark datasets demonstrate the accuracy of our approach. For example, rank-1 accuracies are 83.18% (+1.38) and 93.14% (+0.84) for the DukeMTMC and Market-1501 datasets, respectively. The proposed method shows encouraging improvements compared with state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.