Abstract
Radionuclides released into the atmosphere following the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident were detected by ground-based monitoring stations worldwide. The inter-continental dispersion of radionuclides provides a unique opportunity to evaluate the ability of atmospheric dispersion models to represent the processes controlling their transport and deposition in the atmosphere. Co-located measurements of radioxenon (133Xe) and caesium (137Cs) concentrations enable individual physical processes (dispersion, dry and wet deposition) to be isolated. In this paper we focus on errors in the prediction of 137Cs attributed to the representation of particle size and solubility, in the process of modelling wet deposition. Simulations of 133Xe and 137Cs concentrations using the UK Met Office NAME (Numerical Atmospheric-dispersion Modelling Environment) model are compared with CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organisation) surface station measurements. NAME predictions of 137Cs using a bulk wet deposition parameterisation (which does not account for particle size dependent scavenging or solubility) significantly underestimate observed 137Cs. When a binned wet deposition parameterisation is implemented (which accounts for particle size dependent scavenging) the correlations between modelled and observed air concentrations improve at all 9 of the Northern Hemisphere sites studied and the respective RMSLE (root-mean-square-log-error) decreases by a factor of 7 due to a decrease in the wet-deposition of Aitken and Accumulation mode particles. Finally, NAME simulations were performed in which insoluble submicron particles are represented. Representing insoluble particles in the NAME simulations improves the RMSLE at all sites further by a factor of 7. Thus NAME is able to predict 137Cs with good accuracy (within a factor of 10 of observed 137Cs values) at distances greater than 10,000 km from FDNPP only if insoluble submicron particles are considered in the description of the source. This result provides further evidence of the presence of insoluble Cs-rich microparticles in the release following the accident at FDNPP and suggests that these small particles travelled across the Pacific Ocean to the US and further across the North Atlantic Ocean towards Europe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.