Abstract

This paper attempts to improve upon the range of applicability and predictability of the empirical highly accelerated lifetime testing (HALT) equation that has been traditionally used to estimate time dependent breakdown strength performance in multilayer ceramic capacitors (MLCC) and integrated thin film capacitor structures. The present and traditional HALT equation shows evidence of being limited in thin dielectric layers under high fields, for example, in high capacitance MLCCs. When the traditional HALT equations are applied to MLCCs with higher operating electric fields, there are often field dependent voltage acceleration factors resulting in ambiguous data analysis. Here, we introduce a physical model to account for a critical ionic space charge accumulation preceded by the ionic hopping or electromigration of oxygen vacancies leading to an ultimate increase in leakage current typical of dielectric resistance degradation. Mean time to failure degradation data on experimental capacitors indicates superior predictions with the new non-linear equation than with the traditional HALT equation to provide more accurate and simpler testing in future components. It is further noted that this approach may be applicable to many capacitive devices that operate under a high bias and can have ionic space charge accumulation at interfaces prior to breakdown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call