Abstract

This paper improves previous distinguishers and key recovery attacks against Deoxys-BC that is a core primitive of the authenticated encryption scheme Deoxys, which is one of the remaining candidates in CAESAR. We observe that previous attacks by Cid et al. published from ToSC 2017 have a lot of room to be improved. By carefully optimizing attack procedures, we reduce the complexities of 8- and 9-round related-tweakey boomerang distinguishers against Deoxys-BC-256 to \(2^{28}\) and \(2^{98}\), respectively, whereas the previous attacks require \(2^{74}\) and \(2^{124}\), respectively. The distinguishers are then extended to 9-round and 10-round boomerang key-recovery attacks with a complexity \(2^{112}\) and \(2^{170}\), respectively, while the previous rectangle attacks require \(2^{118}\) and \(2^{204}\), respectively. The optimization techniques used in this paper are conceptually not new, yet we believe that it is important to know how much the attacks are optimized by considering the details of the design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.