Abstract

An improved reflectarray Phase-Only Synthesis technique which employs the generalized Intersection Approach (IA) algorithm is fully described. It is formulated with the First Principle of Equivalence and takes into account a dielectric frame which is usually present to screw the reflectarray breadboard to the supporting structure. The effects of the First Principle of Equivalence versus the Second Principle in the computation of the radiation patterns, as well as the dielectric frame, are assessed and taken into account in an efficient implementation of the generalized IA in order to obtain more accurate results. Different strategies to speed up the synthesis process are presented and to improve convergence. The technique is demonstrated through two examples for space and terrestrial applications: an isoflux pattern for global Earth coverage from a satellite and a Local Multipoint Distribution Service pattern for central stations of cellular systems, both with a working frequency of 25.5 GHz. In addition, experimental results validate the approach described in this work with a prototype with an isoflux pattern working at 30 GHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.