Abstract

While rare earth elements (REEs) play key roles in many modern technologies, the selectivity of recovering of REEs from mining wastewater remains a critical problem. In this study, iron nanoparticles (FeNPs) synthesized from euphorbia cochinchinensis extracts were successfully used for selective recovery of REEs from real mining wastewater with removal efficiencies of 89.4% for Y(III), 79.8% for Ce(III) and only 6.15% for Zn(Ⅱ). FTIR and XPS analysis suggested that the high selective removal efficiency of Y(III) and Ce(III) relative to Zn(Ⅱ) on FeNPs was due to a combination of selective REEs adsorption via complexing with O or N, ion exchange with H+ present in functional groups contained within the capping layer and electrostatic interactions. Adsorptions of Y(III) and Ce(III) on FeNPs conformed to pseudo second-order kinetics and the Langmuir isotherm model with maximum adsorption capacities of 5.10 and 0.695 mg∙g−1, respectively. The desorption efficiencies of Y(III) and Ce(III) were, respectively, 95.0 and 97.9% in 0.05 M acetic acid, where desorption involved competitive ion exchange between Y(III), Ce(III) and Zn(Ⅱ) with H+ contained in acetic acid and intraparticle diffusion. After four consecutive adsorption-desorption cycles, adsorption efficiencies for Y(III) and Ce(III) remained relatively high at 52.7% and 50.1%, respectively, while desorption efficiencies of Y(III) and Ce(III) were > 80.0% and 95.0%, respectively. Overall, excellent reusability suggests that FeNPs can practically serve as a potential high-quality selectivity material for recovering REEs from mining wastewaters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call