Abstract
In this paper, we consider the use of total variation (TV) minimization for compressive imaging, that is, image reconstruction from subsampled measurements. Focusing on two important imaging modalities---namely, Fourier imaging and structured binary imaging via the Walsh--Hadamard transform---we derive uniform recovery guarantees asserting stable and robust recovery for arbitrary random sampling strategies. Using this, we then derive a class of sampling strategies which are theoretically near-optimal for recovery of approximately gradient-sparse images. For Fourier sampling, we show recovery of such an image from $m \gtrsim_d s \cdot \log^2(s) \cdot \log^4(N)$ measurements, in $d \geq 1$ dimensions. When $d = 2$, this improves the current state-of-the-art result by a factor of $\log(s) \cdot \log(N)$. It also extends it to arbitrary dimensions $d \geq 2$. For Walsh sampling, we prove that $m \gtrsim_d s \cdot \log^2(s) \cdot \log^2(N/s) \cdot \log^3(N) $ measurements suffice in $d \geq 2$ dimensions. To the best of our knowledge, this is the first recovery guarantee for structured binary sampling with TV minimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.