Abstract

An innovative rear contacting structure for copper indium gallium (di) selenide (CIGS) thin-film solar cells is developed in an industrially viable way and demonstrated in tangible devices. The idea stems from the silicon (Si) industry, where rear surface passivation layers are combined with micron-sized local point contacts to boost the open-circuit voltage (V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">OC</sub> ) and, hence, cell efficiency. However, compared with Si solar cells, CIGS solar cell minority carrier diffusion lengths are several orders lower in magnitude. Therefore, the proposed CIGS cell design reduces rear surface recombination by combining a rear surface passivation layer and nanosized local point contacts. Atomic layer deposition of Al <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> is used to passivate the CIGS surface and the formation of nanosphere-shaped precipitates in chemical bath deposition of CdS to generate nanosized point contact openings. The manufactured Al <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> rear surface passivated CIGS solar cells with nanosized local rear point contacts show a significant improvement in V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">OC</sub> compared with unpassivated reference cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.