Abstract

Rapid Visual Screening (RVS) is a procedure that estimates structural scores for buildings and prioritizes their retrofit and upgrade requirements. Despite the speed and simplicity of RVS, many of the collected parameters are non-commensurable and include subjectivity due to visual observations. This might cause uncertainties in the evaluation, which emphasizes the use of a fuzzy-based method. This study aims to propose a novel RVS methodology based on the interval type-2 fuzzy logic system (IT2FLS) to set the priority of vulnerable building to undergo detailed assessment while covering uncertainties and minimizing their effects during evaluation. The proposed method estimates the vulnerability of a building, in terms of Damage Index, considering the number of stories, age of building, plan irregularity, vertical irregularity, building quality, and peak ground velocity, as inputs with a single output variable. Applicability of the proposed method has been investigated using a post-earthquake damage database of reinforced concrete buildings from the Bingöl and Düzce earthquakes in Turkey.

Highlights

  • Averting a subsequent natural calamity is certainly relatively impractical

  • The information of 28 reinforced concrete buildings in Bingöl, and 484 reinforced concrete buildings in Düzce have been selected from the SERU (Structural Engineering Research Unit) database [49], which was collected from the street survey by a team of researchers from Middle East Technical

  • The Bingöl earthquake struck with a magnitude Mw = 6.4, reported peak ground acceleration (PGA) 0.556 g and Peak Ground Velocity (PGV) 34.5 cm/s [50]

Read more

Summary

Introduction

Averting a subsequent natural calamity is certainly relatively impractical. due to the rapid progress of simulation science and seismological studies, it is quite possible to mitigate the catastrophic effects post-disaster. If earthquake safety (risk) assessment of buildings is viewed as Heinrich’s domino theory of cause and effects [1], damage results from a chain of sequential events, metaphorically like a line of dominoes falling over. Where the first piece is the seismic hazard, which plays an important role and is inherently unavoidable, followed by the building vulnerability, construction characteristics, which lead to seismic risk and damage of buildings and cause loss and injury of residents, respectively. As it is not possible to modify the seismic hazard to reduce the risk, emphasis should be placed on the study of vulnerability assessment and reduction as a measure of damage/loss mitigation. Seismic vulnerability assessment of reinforced concrete buildings using hierarchical fuzzy rule base modeling.

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.