Abstract
Problem statement. A rank algorithm for selecting radio emission modes for operation in conditions of heterogeneity of sources and complex interference conditions, including the possible presence of mutual interference, is synthesized.Objective. The synthesis purpose is to ensure the independence of mode recognition from particular features of radio emission observation. Algorithm input is the primary signal processing result that includes such estimations as pulses durability, frequency and amplitude dynamics, and absolute variations. Primary decision statistics are formed using these values: observable signal base and relation variations of frequency and amplitude. Secondary statistics are formed based on primary ones using median and recursive or maximum and recursive smoothing. Each of the decision statistics in the multi-threshold procedure is transformed into a row of ranks, the size of which corresponds to the number of recognized modes. In aggregate, these lines form a ranking table (matrix) with colons representing recognized modes’ discrete descriptions. Fluent observation processing includes rank formation for used decision statistics. Mode recognition is performed either following a ranking table or using an additional voting procedure 2/3. An alternative approach consists of constructing the Manhattan mismatch metric of the current and reference ranks and making a decision on the criterion of the minimum mismatch metric.Results. Mode recognition performed on results of this comparison using unbalance metrics minimum criterion. Thresholds in frames of the ranking procedure are formed heuristically at ranking table formation. They are then used at fluent rank formation for observable modes. The performed numerical experiment shows that maximal and recursive filtration provides an errorless selection of all observable modes. This filtration represents the composition of maximum selection in sliding window and subsequent recursive first-order filtration. An additional advantage of this filtration is a simpler maximum selection in comparison with the median one. In perspective, it can provide increased operating speed.Practical implications. Performed consideration shows that rank selection is worthwhile at the observation of heterogeneous irradiation sources. Algorithm strength is decision simplicity in a complex situation. Additional algorithm advantage is the possibility of extending alternative irradiation modes and, hence, for more representative data sets.
Highlights
Усовершенствованная версия рангового алгоритма селекцииКаждая из решающих статистик в рамках многопороговой процедуры трансформируется в строку рангов, размер которой соответствует числу распознаваемых режимов
Each of the decision statistics in the multi-threshold procedure is transformed into a row of ranks, the size of which corresponds to the number of recognized modes
An alternative approach consists of constructing the Manhattan mismatch metric of the current and reference ranks and making a decision on the criterion of the minimum mismatch metric
Summary
Каждая из решающих статистик в рамках многопороговой процедуры трансформируется в строку рангов, размер которой соответствует числу распознаваемых режимов. Текущая обработка наблюдения при этом состоит в формировании рангов для используемых решающих статистик. Альтернативный подход, который рассматривается в статье, состоит в построении манхэттенской метрики рассогласования текущих и эталонных рангов и принятии решения по критерию минимума метрики рассогласования. Решающие статистики трансформируются в набор рангов, используемых для распознавания режима по результатам сравнения с эталоном в форме таблицы ранжирования. Это сравнение состоит в построении манхэттенской метрики рассогласования текущих и эталонных рангов, а решение о распознавании принимается по критерию минимума метрики рассогласования. Пороги для процедуры ранжирования определяются эвристически при построении таблицы ранжирования, а затем используются при формировании текущих рангов для наблюдаемых режимов. Построенный алгоритм селекции допускает возможность естественного расширения для растущей номенклатуры распознаваемых режимов, а также для повышения надежности их распознавания путем введения дополнительных решающих статистик.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.