Abstract

An improved quasi-Newton (QN) algorithm that performs data-selective adaptation is proposed whereby the weight vector and the inverse of the input-signal autocorrelation matrix are updated only when the <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">a priori</i> error exceeds a prespecified error bound. The proposed algorithm also incorporates an improved estimator of the inverse of the autocorrelation matrix. With these modifications, the proposed QN algorithm takes significantly fewer updates to converge and yields a reduced steady-state misalignment relative to a known QN algorithm proposed recently. These features of the proposed QN algorithm are demonstrated through extensive simulations. Simulations also show that the proposed QN algorithm, like the known QN algorithm, is quite robust with respect to roundoff errors introduced in fixed-point implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.