Abstract
We investigated the comparative structural and optical properties of semipolar InGaN/GaN multiple quantum wells (MQWs) grown on the <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$(1\bar{1}01)$</tex></formula> facet GaN/sapphire substrate by metal–organic chemical vapor deposition using lateral epitaxial overgrowth. The scanning electron microscopy (SEM), photoluminescence (PL), and temperature-varying time-resolved photoluminescence measurement were performed to investigate the structure and optical properties. The cross-sectional SEM image shows that the stripe triangular structure of the QW with semipolar <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$(1\bar{1}01)$</tex></formula> planes is obtained as sidewall facets with the mask stripes aligned along the GaN <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$a$</tex></formula> -axis. The structural and optical advantages of semipolar orientations were confirmed by a modurate shift of the PL peak energy, higher internal quantum efficiency, and lower radiative recombination lifetime than the MQWs on (0001) GaN grown by conventional methods. The results were obtained because of the reduced polarization fields in semipolar InGaN/GaN MQWs comparing with that in polar (0001) MQWs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.