Abstract
Self-assembled, multistack InAs quantum dot molecules (QDMs) were grown by a modified molecular beam epitaxial (MBE) technique, which involves multiple stacking and multiple cycling of the thin-capping-and-regrowth process, so as to obtain a large volume density of quantum dots on the sample. Furthermore, the high-density InAs QDMs were also grown sandwiched either between a double heterostructure (DHS) or between a quantum-well (QW) structure. It was found from microphotoluminescence (μ-PL) measurements that the QDMs sandwiched between these structures give broader PL spectra than those of the as-grown QDMs. The broadening of the PL spectra is associated with the poorer dot size uniformity, which arises from the long and complicated MBE growth processes. However, comparing between the QDMs in the DHS and in the QW structure, the latter give narrower PL spectra. The narrower PL spectra for the QDM-in-QW structure is attributed to the improved quantum confinement effect arising from the use of the QW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.