Abstract

In designing quantum control, it is generally required to simulate the controlled system evolution with a classical computer. However, computing the time evolution operator can be quite resource-consuming since the total Hamiltonian is often hard to diagonalize. In this paper, we mitigate this issue by substituting the time evolution segments with their Trotter decompositions, which reduces the propagator into a combination of single-qubit operations and fixed-time system evolutions. The resulting procedure can provide substantial speed gain with acceptable costs in the propagator error. As a demonstration, we apply the proposed strategy to improve the efficiency of the gradient ascent pulse engineering algorithm for searching optimal control fields. Furthermore, we show that the higher-order Trotter decompositions can provide efficient Ans\"atze for the variational quantum algorithm, leading to improved performance in solving the ground-state problem. The strategy presented here is also applicable for many other quantum optimization and simulation tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.