Abstract

We use observed CO2:CO correlations in Asian outflow from the TRACE‐P aircraft campaign (February–April 2001), together with a three‐dimensional global chemical transport model (GEOS‐CHEM), to constrain specific components of the east Asian CO2 budget including, in particular, Chinese emissions. The CO2/CO emission ratio varies with the source of CO2 (different combustion types versus the terrestrial biosphere) and provides a characteristic signature of source regions and source type. Observed CO2/CO correlation slopes in east Asian boundary layer outflow display distinct regional signatures ranging from 10–20 mol/mol (outflow from northeast China) to 80 mol/mol (over Japan). Model simulations using best a priori estimates of regional CO2 and CO sources from Streets et al. [2003] (anthropogenic), the CASA model (biospheric), and Duncan et al. [2003] (biomass burning) overestimate CO2 concentrations and CO2/CO slopes in the boundary layer outflow. Constraints from the CO2/CO slopes indicate that this must arise from an overestimate of the modeled regional net biospheric CO2 flux. Our corrected best estimate of the net biospheric source of CO2 from China for March–April 2001 is 3200 Gg C/d, which represents a 45% reduction of the net flux from the CASA model. Previous analyses of the TRACE‐P data had found that anthropogenic Chinese CO emissions must be ∼50% higher than in Streets et al.'s [2003] inventory. We find that such an adjustment improves the simulation of the CO2/CO slopes and that it likely represents both an underreporting of sector activity (domestic and industrial combustion) and an underestimate of CO emission factors. Increases in sector activity would imply increases in Chinese anthropogenic CO2 emissions and would also imply a further reduction of the Chinese biospheric CO2 source to reconcile simulated and observed CO2 concentrations.

Highlights

  • [1] We use observed CO2:CO correlations in Asian outflow from the TRACE-P aircraft campaign (February–April 2001), together with a three-dimensional global chemical transport model (GEOS-CHEM), to constrain specific components of the east Asian CO2 budget including, in particular, Chinese emissions

  • In this study we use the distinct and regionally variable CO2:CO correlations in Asian outflow measured on the TRACE-P aircraft mission [Jacob et al, 2003], together with a global three-dimensional (3-D) model, to explore the regional constraints that they provide on the combustion sources of CO2 and to separate these contributions from biospheric CO2 fluxes

  • These inventories provide the basis for consistent simulations of combustion in the Goddard Earth Observation System (GEOS)-CHEM 3-D chemical transport model (CTM)

Read more

Summary

Fossil Fuelb

Randerson and G. van der Werff, personal communication, 2003) Differences between these and the climatological fluxes in the Asian region for the TRACE-P period were small (

Fossil fuel
Decreased Biosphere
Domestic Biofuel Coal Industry Transport Powerb Cement
Findings
Summary
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.