Abstract

Resistance spot welding (RSW) exhibits low heat input and high efficiency. However, because Mo exhibits low resistivity and high hot strength, it is difficult to effectively combine the resistance spot welded joints of Mo. The lap joint of 1-mm-thick Mo sheets was welded using RSW. Moreover, the welding parameters (current, welding duration, and electrode force) were optimised. Using Ti foil as the interlayer, the influence of the alloying element on the resistance spot welded joint of the Mo sheets was explored. The results indicate that the success rate of welding can be improved by utilising a high current and short welding duration, and increasing the electrode force causes reduced contact resistance and further failure of the welding. In addition, an excessively high electrode force may result in electrode adhesion. Here, a current of 20 kA, welding duration of 0.4 s, and electrode force of 3726 N were used as the optimised parameters. The joint obtained under the parameters can withstand the highest shear load (about 2.20 kN); the shear load of the joint obtained after adding the Ti interlayer (thickness: 0.03 mm) increases by approximately 54%. After adding the Ti foil, the heat input on the interface increased and Ti melted to form metallurgical bonding with Mo. Under these conditions, the interfacial strength increased significantly. During the tensile–shear test, the heat-affected zone of Mo is fractured, in which the shear fracture is subjected to brittle failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.