Abstract

AbstractWe report the results derived from the use of molecular descriptors calculated with the correlation weights (CWs) of local graph invariants for modeling of anti-HIV-1 potencies of two groups of reverse transcriptase inhibitors. The presence of different chemical elements in the molecular structure of the inhibitors and the Morgan extended connectivity values of zeroth-, first-, and second order have been examined as local graph invariants in the labeled hydrogen-filled graphs. We have computed via Monte Carlo optimization procedure the values of CWs which produce the largest possible correlation coefficient between the numerical data on the anti-HIV-1 potencies and those values of the descriptors on the training set. The model of the anti-HIV-1 activity obtained with compounds of training set by means of optimization of correlation weights of chemical elements present together with Morgan extended connectivity of first order makes up a sensible model for a satisfactory prediction of the endpoints of the compounds belonging to the test set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.