Abstract

Taurine was employed as an additive to improve the thermal stability and electrochemical performance of positive electrolyte for a vanadium redox flow battery. The addition of taurine could significantly improve the thermal stability of positive electrolyte, and 2 M V(V) electrolyte with 4 mol% taurine could keep it stable at 40 °C for 120 h, which was 54 h longer than the pristine one. Electrochemical measurements showed that the electrolyte with taurine exhibited superior electrochemical activity and reaction kinetics with a larger diffusion coefficient, exchange current density and reaction rate constant compared with the pristine one. Moreover, the cell using taurine as additive achieved higher average energy efficiency (81.75%) than the pristine cell (79.15%). The Raman and XPS spectroscopy illustrated that taurine could combine with VO2+ to form a small molecule complex and the –NH2 in taurine could be adsorbed on the surface of the electrode to provide more active sites for the electrode reaction, which led to the improvement of mass transfer and the charge transfer process for the V(IV)/V(V) redox reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call