Abstract

Oenococcus oeni CECT4730, which catalyses the asymmetric reduction of 2-octanone to (R)-2-octanol with high enantioselectivity, was further studied to exploit its potential for production of (R)-2-octanol in an aqueous/organic solvent biphasic system. Variables such as the volume ratio of aqueous to organic phase (Va/Vo), buffer pH, reaction temperature, shaking speed, co-substrates and the ratio of biocatalyst to substrate were examined with respect to the molar conversion, the initial reaction rate and the product enantiomeric excess (e.e.). Under the optimized conditions (Va/Vo=1:1 (v/v), buffer pH=8.0, reaction temperature=30°C, shaking speed=150 rev/min, ratio of glucose to biomass=5.4:l (w/w), ratio of biocatalyst to substrate=0.51:l (g/mol)), the highest space time yield of (R)-2-octanol, 24 mmol L−1 per h, and >98% product e.e. were obtained at a substrate concentration close to 1.0 mol L−1 after 24 h reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.