Abstract

AbstractHigh‐efficiency solid‐state‐ligand‐exchange (SSE) step‐free colloidal quantum dot photovoltaic (CQDPV) devices are developed by employing CQD ink based active layers and organic (Polythieno[3,4‐b]‐thiophene‐co‐benzodithiophene (PTB7) and poly(3‐hexylthiophene) (P3HT)) based hole transport layers (HTLs). The device using PTB7 as an HTL exhibits superior performance to that using the current leading organic HTL, P3HT, because of favorable energy levels, higher hole mobility, and facilitated interfacial charge transfer. The PTB7 based device achieves power conversion efficiency (PCE) of 9.60%, which is the highest among reported CQDPVs using organic HTLs. This result is also comparable to the PCE of an optimized device based on a thiol‐exchanged p‐type CQD, the current‐state‐of‐the‐art HTL. From the viewpoint of device processing, the fabrication of CQDPVs is achieved by direct single‐coating of CQD active layers and organic HTLs at low temperature without SSE steps. The experimental results and device simulation results in this work suggest that further engineering of organic HTL materials can open new doors to improve the performance and processing of CQDPVs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.