Abstract

Abstract Water-assisted injection molding (WAIM) is a promising molding process developed based on conventional injection molding (CIM). It has been a research hotspot in recent years and is still receiving extensive attention from many scholars and industries because of its significant potential advantages in practical applications. However, compared with CIM, since the additional water-related parameters are involved, the process moldability of thermoplastics is significantly reduced, especially for fiber-reinforced thermoplastics, which stunts the development of WAIM process. In this work, short-shot WAIM with an overflow cavity (OSSWAIM) was developed to address the problems and broaden the application scope of WAIMs. The results showed that compared with overflow WAIM (OWAIM) and short-shot WAIM (SSWAIM), OSSWAIM could significantly improve the process moldability and part quality of fiber-reinforced thermoplastics, especially for thermoplastic composites with a high fiber weight fraction. Besides, it was also found that water penetration had a slight influence on the fiber orientation near the water inlet, but had a significant influence on the fiber orientation near the end of mold cavity. Finally, three processing parameters affecting the water penetration, i.e., water pressure, melt temperature, and water injection delay time were investigated in terms of their influences on the fiber orientation within OSSWAIM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.