Abstract

An analysis of large deformations of flexible membrane structures within the tension field theory is considered. A modification of the finite element procedure by Roddeman et al. (Roddeman, D. G., Drukker, J., Oomens, C. W. J., Janssen, J. D., 1987, ASME J. Appl. Mech. 54, pp. 884–892) is proposed to study the wrinkling behavior of a membrane element. The state of stress in the element is determined through a modified deformation gradient corresponding to a fictive nonwrinkled surface. The new model uses a continuously modified deformation gradient to capture the location orientation of wrinkles more precisely. It is argued that the fictive nonwrinkled surface may be looked upon as an everywhere-taut surface in the limit as the minor (tensile) principal stresses over the wrinkled portions go to zero. Accordingly, the modified deformation gradient is thought of as the limit of a sequence of everywhere-differentiable tensors. Under dynamic excitations, the governing equations are weakly projected to arrive at a system of nonlinear ordinary differential equations that is solved using different integration schemes. It is concluded that implicit integrators work much better than explicit ones in the present context.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call