Abstract

Lanthanum-135 (135La) is a favorable Auger electron emitter with a high Auger electron yield and low gamma emission, making it promising for Auger electron radiotherapy. However, successful application requires reliable and scalable 135La production. Up to now, metallic natural barium (natBa) is a commonly used target material, but this material is sensitive to moisture and oxidation. BaCO3 has also been tested, due to its higher chemical stability. However, BaCO3 has poor thermal conductivity, limiting the applicable current and making high yield production challenging. In this study, we pressed a mixture of enriched [135Ba]BaCO3 and fine aluminum (Al) powder to provide a stable target with improved thermal conductivity compared to pure BaCO3. After 4 h of irradiation with a 16.5 MeV proton beam at 20 μA current, 1.62 ± 0.18 GBq was produced from a 200 mg [135Ba]BaCO3:Al (1:2, w/w) target. This corresponded to a saturation yield of 11.91 ± 1.31 GBq (or 596 ± 66 MBq/μA). A purification procedure involving initial precipitation, followed by a single composite column containing a layer of TK200 resin and a second layer of branched DGA resin was developed, with 97.1 ± 3.6 % decay corrected 135La recovery. [135La]LaCl3 was obtained in an effective molar activity of 79.6 ± 25.3 MBq/nmol (DOTA titration), 104.0 ± 40.4 MBq/nmol (DTPA titration) and 186.5 ± 83.8 MBq/nmol (CHX-A″-DTPA titration), and a radionuclidic purity (RNP) of >99.9 % at end of purification, hereby demonstrating a purity suitable for radiopharmaceutical use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.