Abstract

Heart transplant rejection is one major threat for the survival of patients with a heart transplant. Endomyocardial biopsies are effective in showing signs of heart transplant rejection even before patients have any symptoms. Manually examining the tissue samples is costly, time-consuming and error-prone. With recent advances in deep learning (DL) based image processing methods, automatic training and prediction on heart transplant rejection using whole-slide images expect to be promising. This paper develops an advanced pipeline for quality control, feature extraction, clustering and classification. We first implement a stacked convolutional autoencoder to extract feature maps for each tile; we then incorporate multiple instance learning (MIL) with dimensionality reduction and unsupervised clustering prior to classification. Our results show that utilizing unsupervised clustering after feature extraction can achieve higher classification results while preserving the capability for multi-class classification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.